FINITELY ADDITIVE MEASURES
IN THE ERGODIC THEORY
OF MARKOV CHAINS. II f

A. 1. Zhdanok*

Abstract

We develop a new approach to the study of general Markov chains (MC),
i.e., homogeneous Markov processes with discrete time on an arbitrary
phase space. In the first part of the article, we suggested an extension
of the traditional space of countably additive measures to the space of
finitely additive measures. Given an arbitrary phase space, we constructed
its "gamma-compactification" to which we extended each Markov chain.
We established an isomorphism between all finitely additive Markov chains
on the initial space and Feller countably additive chains on its "gamma-
compactification." Using the above construction, in the second part, we
prove weak and strong ergodic theorems that establish a substantial depen-
dence of the asymptotic behavior of a Markov chain on the presence and
properties of invariant finitely additive measures. The study in the article
is carried out in the framework of functional operator approach.
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sure, Markov chain, Markov operators, arbitrary phase space, compacti-
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The present article is a continuation of [21]; hence, all notations remain
the same and the definitions are repeated only in a few cases. All references
to sections and formulas of the first part [21] are straightforward.

4. ERGODIC THEOREMS FOR MARKOV CHAINS
Introduction

Let X be an arbitrary set and let ¥ be an algebra of its subsets. Denote by
o(2) the o-algebra generated by ¥, often assuming ¥ itself to be a o-algebra.
If X is a topological space with topology 7= 7x then A = Ax = A,
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2 A. I Zhdanok

and B = Bx = B; are the Borel algebra and oc-algebra on X generated
by 7. Throughout the article, we assume ¥ to contain all singletons of X.
We also assume that our topological space X is minimally 77 -separated, i.e.,
we suppose that all its singletons are closed. In this case, its Borel algebra A
and o-algebra B contain all singletons. All Hausdorff, regular, normal, and
metric spaces are T7-separated.

We recall some notations of [21]. For an arbitrary X, denote by B(X)
the Banach space of all bounded functions f: X — R with the sup-norm,;
by H(X,Y), the linear space of all linear combinations of the characteristic
functions x, of E € ¥; by B(X,X), the closure of H(X,Y) in B(X). If ¥ is
a o-algebra then B(X,Y) is the Banach space of all bounded ¥-measurable
functions f: X — R with the sup-norm.

In this article, we also use the following notations: C(X) is the Ba-
nach space of all continuous bounded functions on a topological space X
with the sup-norm; ba(X,Y) is the Banach space of all bounded finitely
additive measures p: ¥ — R with norm the total variation of a measure
on X (||u]] = Var(u, X)); ca(X,X) is the subspace of all countably additive
measures; pfa(X,Y) is the subspace of all purely finitely additive measures;
rba(X,Y) and rea(X, X)) are the subspaces of all regular measures for a topo-
logical space X.

Suppose that we have a countably additive Markov chain (MC) on (X, X)
with transition function p(x, E') and Markov operators T: B(X,X) — B(X,Y)
and A: ca(X,X) — ca(X,X). In [21, Section 3], we constructed an extension
of A from the “traditional” domain of definition ca(X, X) to the space of finitely
additive measures ba(X, X). Moreover, the extended operator A is adjoint to T,
ie, TF = A.

If M is a space of measures then

Su={peM:p>0, p(X)=1},
Ay ={p € Sy :pu=Au}.

In particular,
Apfa = {,u € Sp : 1= Ap, p is purely finitely additive}.

We will sometimes omit the index for Ap,: A = Ay,.

The spaces of functions and measures are in a sense dual: B*(X,X) =
ba(X, X)) for an arbitrary (X, ) and C*(X) = rba(X,.A) for a normal topolog-
ical X, C*(X) = rca(X, B) for a compact Hausdorff X, where equalities stand
for isometric isomorphisms and the spaces on the left are the topological duals
to the corresponding spaces of functions.
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Finitely Additive Measures in the Ergodic Theory of Markov Chains. 11 3

By the gamma-compactification (see [21, Section 9]) vX = 75, X of the ini-
tial measure space (X, X) we mean the space of all maximal ideals of the Ba-
nach algebra B(X, ¥) with the Tychonoff topology 7, and the Borel o-algebra
B, = o(ry). Also, the gamma-compactification can be treated as the fam-
ily of all multiplicative functionals in B*(X,¥) = ba(X,X), to which there
correspond two-valued measures in the x-weak topology 75.

Consider the initial space (X, ¥) and its gamma-compactification (y.X, By).

The mapping s: X — vX is an injective dense embedding of X into X (by
identifying z and s(z)). The mapping t: & — N, x is an algebraic isomor-
phism of the o-algebra ¥ onto the algebra NV, x of clopen sets in yX. Moreover,
N, x is a base of topology on (vX, ) and o(N,x) = Bz(vX), where Bz (7X)
is the Baire o-algebra of yX (see [21, Definition 9.2]).

There is an isometric linear isomorphism r: B(X, %) — C(yX) that re-
alizes a continuous extension of measurable functions on (X,Y) to continu-
ous functions on (vX,7,). Adjoint to r is the isometric linear isomorphism
r*: rea(yX, By) — ba(X,X). It is often useful to consider the inverse isomor-
phism [r*]71: ba(X,X) — rca(yX,B,) extending finitely additive measures
on (X, ) to countably additive regular measures on (y.X, B,).

The ergodic theory for Feller Markov chains (MC’s) on a compact space
is well developed in contrast to the case for arbitrary chains on an arbitrary
phase space. In Section 10, we constructed an isomorphism between an ar-
bitrary MC and a Feller MC on a compact space. In the next sections, this
construction will enable us to translate many facts in the theory of Feller MC’s
into the corresponding assertions for arbitrary MC’s. As a result, we will obtain
new ergodic theorems with purely finitely additive measures actively involved.
Special techniques developed in the first part of the article allow us to make
the ergodic theorems themselves and their proofs clearer and formally shorter.

There are many articles considering the construction of the Feller exten-
sion of the initial Markov chain to the Stone-Cech or a similar compactification
of the initial phase space. Here we must point out a series of articles by Foguel,
for example, [5-7], and also the articles [9] and [14] by Le Cam and Shur.
In Horowitz’s article [8], an extension of the MC is in fact constructed to some
compactification generated by the space Loo (X, Y, m) with a prescribed mea-
sure m. A.A.Borovkov also uses extensions in proving the ergodic theorems
in his monograph [1]. There are some more publications on the topic, in which
special constructions are considered of extensions of MC’s to enlargements of
the phase space.

We stress that, in contrast to all similar articles, our approach imposes
a priori restrictions neither on the Markov chain nor on its phase space. We will
make comparison with other authors’ results directly in the relevant places.
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4 A. I Zhdanok

11. Ergodic Alternatives

Recall that we denote by Ay, the Cesaro mean for a Markov sequence of
measures with initial measure p € ba(X, X):

1 n
:—E Aku, n=12,....
n
k=1

We now use conventional notation of the literature on probability:

pl(x,E) =p(z, E),
pFt(z, B) :/ P (y, E)p(z,dy) = (p*(-, E),p(z,-)), k=1,2,....
X

Here the upper index in p*(z, E) means the integral “convolution” Then

ARy = [ pF(x, ) p(dz).
Theorem 11.1. Assume given an MC on (X, X). For every set E € 3,
we have the equalities r} (E) = r2(F) = r3(E) = r4(E), n = 1,2, ..., where

ro(E) = sup M(E); ra(E) = sup Mi(E);
HESha HESca
1 & 1 &
3 k 4 k
r (E):Sup_ p (l‘,E), r (E): - T X
! mEX”; ! ”; s

Proof. Let ju € Sp,. Then

Z/ (, B)p(da) /[ prE ]

< sup — Zp (2, E) = r3(E) = sup — ZA’“

zeX N 1 reX N
1
< sup L3 aE) = ()

(here and below §, is the Dirac measure with support at z). From this it
follows that
rn(E) = sup Mi(E) < rp(E) < 1y (E),
HESpa
ie., rL(E) =r3(E).
Reasoning in a similar way, we find r2(E) = r3(E). The equality

r3(E) = r}(E) follows from definitions. The theorem is proven.
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Finitely Additive Measures in the Ergodic Theory of Markov Chains. 11 5t

Theorem 11.2. Suppose that X is a topological space, and we have
an arbitrary MC on (X, B). Put

r2(E)= sup M(E), E€B, n=12,....
lLESrca

Then 7t (E) = r2(E), i = 1,2,3,4, for every E € B.
The proof is carried out by analogy with that of the preceding theorem.

Remark. If X is a topological space then we may assume a Markov
chain to be defined on the pair (X, .A) with A the Borel algebra. In this case,
we put

rg(E) = sup M(E), FeA n=12,....
Hesrba

It is easy to check that 7’ (E) = r8(FE), i = 1,2,3,4,5, for every E € A.

Theorem 11.3. Let X be a normal space. Assume that we have
a Feller MC on (X, B). Then each closed set F' C X always meets either (Al)
or (B1):

(A1) Vi € Sppa Ma(F) — 0 as n — oc;

(B1) 3u € Sppa p= Ap, u(F) > 0.

Proof. Assume that (A1) is not fulfilled for F'. Then there exist p € Spp,,
§ > 0, and a sequence {n;} such that M;;(F) > 6,i=1,2,.... By Theorem 7.1
(Corollary 7.2), { M, } has 7¢-limit measures 7 all invariant for A. Theorem 2.9
implies that n(F) > 6 > 0, i.e., (B1) holds. If, in turn, (B1) holds then,
obviously, (A1) does not. The theorem is proven.

Corollary 11.1. Under the conditions of Theorem 11.3, let F' € A be
an arbitrary set. If (A1) does not hold for F then its closure F satisfies (B1).
Moreover, in this case, F' itself need not meet (B1).

Theorem 11.4. Let X be a normal space. Assume given a Feller MC
on (X, B). Then, for every compact set F' C X, (A1) is equivalent to (A2) and
F always meets either (A1), (A2) or (B2), where

(A2) ri(F) = 0asn—o0,i=1,...,6;

(B2) 3 € Spea 1= Ap, pu(F) > 0.

Proof. By Theorem 11.2 and the subsequent remark, we may assume
in (A2) that 7% (F) — 0 as n — oo for some i < 6.

If (B2) holds then, obviously, (A1) fails. Suppose now that (Al) is not
fulfilled. By Theorem 11.3, there exists p € Syp, with = Ap, p(F) > 0. De-
compose the measure 1 = pq + po into its purely finitely additive component
i1 and countably additive component pg. Since 0 < py, pe < p, regularity of p
implies that p1 and pg are regular, i.e., puy € rba(X,B) and p2 € rca(X, B).
By Alexandrov’s Theorem (see [3, Chapter III, Section 5, Theorem 13]), a reg-
ular finitely additive measure on a compact set is countably additive. Indeed,
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6 A. I Zhdanok

p1(F) = 0, whence u(F) = pg(F) > 0. Since p = Apu, we have u; = Ay
and py = Aps (see [5]). So ug € rea(X,B), pg = Aug, and pa(F) > 0, i.e.,
the normalized measure 9 satisfies (B2).

We now prove that (A1) is equivalent to (A2). Clearly, (A2) implies (A1).
Assume that (A2) does not hold for i = 6. Then there exist 6 > 0, a sequence
of measures {y;}, p1j € Srpa, j = 1,2, ..., and a strictly increasing sequence of
indices {n;} such that

Ad(F) >0, j=1,2,....

By Theorem 2.9, each 7¢-limit point p of {)\Zj} meets the condition
u(F) > 6. Construct a sequence of measures {n,} as follows: My = K,
J=12,..., and n, € Sy, are arbitrary measures for n # n;. Then )‘ITZ =
Azzj, ie., {)\ﬁj} is a subsequence in {\2"}, and hence all 7¢-limit measures
for {\’} are 7¢-limit for {\}"}. By Theorem 7.4 (Corollary 7.2), all such p
are invariant for A. By Theorem 7.1, the set of all such measures is nonempty
and included in S,p,. Thus if (A2) does not hold then there exists p € Sppq,

p = Ap, p(F) > 0. Substituting p for the initial measure in \j;, we see
that (A1) is not fulfilled. The theorem is proven.

We emphasize that, for a compact set F' and a Feller MC, convergence
Mo(F) — 0 as n — oo for every p € Syp, implies uniform convergence in y1 €
Srpa and p € Sp,.

The claims of Theorem 11.4 are partially contained in Foguel’s arti-
cles [5,6]. Therein, equivalence of (A1) and (A2) was proven for i = 3 and
alternative (B2) was formulated for a compact Baire set. However, his proofs
contain a gap: a 7¢-limit measure for a sequence of measures {, } is thought of
as T¢-limit for a subsequence \,,,. But this is not necessarily so even for a dense
sequence of measures if no extra conditions are imposed on the compact sets
(Prokhorov’s Theorem (see [11]) does not hold for all spaces). Therefore, it

should be proven that the 7¢-limit measures of the means of A}, (that, generally
speaking, are not the limits of subsequences Ap.) are invariant. This fact was
proven in Theorem 7.1 that was indirectly used in the proof of Theorem 11.4.

We now consider arbitrary MC’s on arbitrary (X, Y). The gamma-com-
pactification yX of (X,¥) is Hausdorff and compact and hence is normal.
The isomorphic MC is Feller on (yX,B,x). This allows us to use Theo-
rems 11.3 and 11.4 in the general case.

Theorem 11.5. Suppose that we have an arbitrary MC on (X, ). Then,
for every E € X, Condition (A3) is equivalent to (A4), and we always have
either (A3), (A4) or (B3):

(A3) Vi € Spy An(E) — 0 as n — oo;

(Ad) ri(E) = 0asn— o0, i=1,2,34;

(B3) Iu € Spa p= Ap, u(E) > 0.
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Finitely Additive Measures in the Ergodic Theory of Markov Chains. 11 7

Proof. By Theorem 11.1, we may assume in (A4) that 7’ (E) — 0 as
n — oo for some i =1, 2, 3, 4.

Suppose that £ € ¥. Then ¢(E) € N,x and t(E) is compact in 7X.
Consequently, Theorem 11.4 holds for the v-MC and the set ¢(E). Moreover,
since v.X is compact, we have rba(vX, Byx) = rca(vX, Byx). From Section 10
it follows readily that Conditions (A3) and (B3) for an arbitrary E € ¥ are
equivalent to Conditions (A1) and (B2) for F' = t(FE). We are left with proving
equivalence of (A2) and (A4) for some i < 4.

Put ¢ = 1 for the MC on (X,X) and i = 5 for the v-MC on (vX, Byx)
and denote the corresponding suprema by r} and 7.

Suppose that p € Sy, and i = [r*]~'p. The constructions of Sections 9

and 10 imply that Ay (E) = )\g(t(E)), i€ Sy, E € X, where M corresponds

to the MC and )\’;:‘, to the v-MC. Since the sets Sp, in ba(X,Y) and Sy
in rca(yX, B,x) are isometrically isomorphic, we have the equality rl(E) =
72 (t(E)). Consequently, rL(E) — 0 as n — oo if and only if 72 (¢(E)) — 0
as n — o0o. The theorem is proven.

Note that, as for compact sets in the Feller case, “pointwise” conver-
gence {M,(E)} (i.e., convergence for every i € Sycq) implies uniform conver-
gence in p € Sp, on every E € X.

For an arbitrary MC, we can now distinguish an analog of the dissipative
part in X. Theorem 11.5 readily implies the following assertion.

Corollary 11.2. Assume given an MC on (X,X) and K € X such that
pu(K) =1 for all p € A. Then

1 n
sup AN(X\K) = sup AN(X\K) = sup —Zpk(x,X\K) —0
NESha NESca reXxX 1 el

as n — 0.

In other words, the MC “disperses” on the “dissipative” set X\ K. It
should be natural to try to maximize X\ K, to give the latter a more explicit
form. In the next section we will see that this can be done if A C ca(X, ).
Then, on X\K, not only the means {\;} vanish but also so does the very
Markov sequence of measures {i,}, and exponentially at that.

If the set of invariant measures A contains purely finitely additive mea-
sures then, as seen from Theorems 6.1 and 6.2 and Example 6.1, K need not
have a subset stochastically closed with respect to the transition function.
This neither allows us to distinguish K more explicitly nor provides stronger
assertions about convergence on X\ K.

Theorem 11.5 can also be applied to a Feller MC. Combining it with
Theorem 11.3, we infer that if ¥ C X is a closed subset meeting (A1) then
the MC has no regular finitely additive invariant measure p with p(F) > 0.
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8 A. I Zhdanok

However, in this case (if (A4) does not hold), the MC can have a nonregular
finitely additive measure n such that n(F) > 0.

With the alternative existence theorems available, it is natural to settle
the following question. Suppose that the conditions of type (A) are not fulfilled.
What connection exists between the limit behavior of the Cesaro means {\;}
and invariant measures nondegenerate on the corresponding sets? In essence,
we have already got an answer to this question in the theorems of Sections 2
and 7. We expose these results in a suitable form below, and, after each
formulation, we will point out explicitly where they are deduced from.

Theorem 11.6. Let (X,Y) and an MC be arbitrary. Then, for every
it € Sp,, there exists n € Ay, such that, for every E € ¥, there exists
a subsequence {n;} = {n;}(F) with \p,(E) — n(E) as i — oo.

If some ji € Sp,, subsequence {n;}, E € X, and o, € [0,1] satisfy
the inequalities o < Aﬁj(E) < fB,7=1,2,..., then there exists n € Ay, such
that « < n(E) < p.

Taking into account Definition 2.2 and the definition of 73-topology in Sec-
tion 1, Theorem 11.6 follows from Theorems 2.7 and 7.7.

Theorem 11.7. Let X be normal. Assume given a Feller MC on (X, B).
Then, for every p € Sy, there exists n € Ay, such that

(1) VfeC(X) IHnmi}t ={n}(f) [fd\u, — [ fdn;
(2) VG =G C X, n(G)=n(G), IHni}= {ni}(@) Ani (G) = n(G);
(3) VF=F C X, n(F)>1limM;(F); VG =G C X n(G) < lim My (G).

Reckoning with the definition of 7¢-topology in Section 1, Theorem 11.7
follows from Theorem 7.1, Alexandrov’s Theorem (see [3, Chapter IV, Sec-
tion 9, Theorem 15]), and Theorem 2.9.

Theorem 11.8. Suppose that X is a Hausdorff compact space and we
have a Feller MC on (X, B). Then, for every p € Syeq, there exists 1 € Ayeq
satisfying assertions (1)—(3) of Theorem 11.7.

The proof is based on Alexandrov’s Theorem stating that every regular
finitely additive measure is countably additive on a compact space.

Theorem 11.9. Suppose that X is a compact metric space and we have
a Feller MC on (X, B). Then, for every ji € Syeq, there exist n € Apeq and {n;}
such that A, — n in the 7¢-topology (i.e., f(\R) — f(n) for all f € C’(X)).

Theorem 11.9 follows from Theorem 7.1 and the well-known Prokhorov’s
Theorem (see [11]).

Recall (see [11]) that a family of measures M C Sy, is called dense if,
for every £ > 0, there exists a compact set K C X with pu(K) > 1 — ¢ for all
we M.
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Theorem 11.10. Suppose that X is a metric space, the MC is Feller,
and the sequence of measures {\h,} is dense for some yi € Sp.,. Then there
exist 1 € Apeq and {n;} such that \p, — n in the T¢-topology.

Theorem 11.10 also follows from Theorem 7.1 and Prokhorov’s Theorem
(see [11]).

Let X be normal. Then, for every A € ba(X, .A), there exists a unique mea-
sure A € rba(X,.A) such that [ fd\ = [ fd\ for every f € C(X) (see [19]).
We call X the regularization of X. Suppose that pu € rba(X,.A) and p > 0.
We call the set R(u) = {\ € ba(X,A) : A > 0, A = u} the class of C-equiva-
lent measures for p (see [19] and [21, Section 1]).

Theorem 11.11. Suppose that X is normal, the MC is arbitrary,
L € Speq, and n is the Tp-limit point for {\,} (and hence n € A,). Then
there exists ( € Sy, such that ¢ =1 and ( is a 7¢-limit point for {\p}. If, in
addition, the MC is Feller then ( = A(, i.e., ( € Aypg-

Theorem 11.11 follows from Theorems 7.2, 2.7, 2.8, and 7.1.

Theorem 11.12. Suppose that X is a metric space, the MC is arbitrary,
€ Srea, and {\} is dense. Then, for every Tg-limit (consequently, belonging
to Ap,) measure 1 there exist {n;} and a base 3 of the initial topology of X
such that M;,(E) — n(E) for every E € 3. Moreover, the regularization
7 € rea(X, B) is T¢-limit for {\l,} and M;, — 7 in the T¢-topology. If the MC
is Feller then n = An.

Theorem 11.12 follows from Prokhorov’s Theorem [11], Theorems 2.5, 2.7,
and 2.8 [21], Theorem 6 [3], and Theorem 7.1 [21].

12. Strong Limit Theorems

Since the first articles by Doeblin in the beginning of the 20th century,
convenient conditions have been sought for MC'’s to have rather good behavior:
Markov sequences of measures or their means converge to combinations of
invariant measures in a metric topology. The most general condition of the kind
is Condition (D) by Doob and Doeblin (see [4]) which generalizes Doeblin’s
conditions from a countable phase space to an arbitrary phase space. Later
Yosida and Kakutani (see [15]) and others proved that (D) is equivalent to
quasicompactness Conditions (K1)—(K3) for the Markov operators. Recall that
an operator T is called quasicompact (quasicompletely continuous) if there exist
a compact (completely continuous) operator 77 and an integer k > 1 such that
|ITF — Ty < 1.

Although exhaustive in a sense, the Doob—Doeblin Conditions are of
a purely analytical nature, which complicates their use in practice. This en-
courages many investigators to look either for equivalent but simpler condi-
tions or for conditions close to (D) but more convenient for specific problems.
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10 A. I Zhdanok

We now formulate the above-mentioned equivalent conditions for an arbitrary
MC on an arbitrary phase space (X, X):
(D) There exist ¢ € ca(X,X), » > 0, ¢ > 0, and £ > 1 such that
¢o(F) <&, E €%, implies pF(z, ) <1 —¢ forall z € X;
(K1) T: B(X,Y) = B(X,X) is quasicompact;
(K2) A: ba(X,X) — ba(X, Y) is quasicompact;
(K3) A: ca(X,X) — ca(X, ) is quasicompact.
If the Markov operators of the chain are quasicompact then we call the MC
itself quasicompact.
If, on (X, X)), we have an MC with transition function p(z, E') and Markov
operators T and A then, for every m > 1, we can define a new MC with
transition function ¢,,(z, F) and operators T,, and A,, as follows:

m

1 ) o
(@ B) = =3 p@B), Tu=3 T An=_3 A%
k=1 k=1 k=1

3

We call these MC’s finitely averaged MC'’s (by the initial MC).

We now state the following condition (D) for the family of finitely averaged
MC’s:
(D) There exist ¢ € ca(X, %), ¢ >0, e > 0, and m > 1 such that from
o(E) <e, E €%, it follows that ¢, (z,E) <1—¢ for all z € X.

Clearly, (D) is Doob-Doeblin Condition (D) for the finitely averaged MC

(with m > 1 fixed) with £ = 1. Hence if (D) is fulfilled then 7,,, and A,, are
quasicompact, i.e., they meet Conditions (K1)-(K3).

Theorem 12.1. If an MC satisfies Doob—Doeblin Condition (D) then it

also meets (D).

Proof. Suppose that (D) holds for some ¢, ¢, and & > 1. We put & = 7.
Then

(LA -1 1 e
(@, B) =7 p'(@.B) < ——+-(l-g)=1-2=1-¢
1=1

if p(F) < & <e. Consequently, Condition (D) holds for the same measure ¢,
€ = 1, and m = k. The theorem is proven.

We amplify our information about finitely averaged MC’s with the follow-
ing assertion.

Lemma 12.1. If (D) holds for some m = my then it also holds for all
m > my.
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Proof. Suppose that (f)) is satisfied for some ¢, £, and m. Repeating
the calculations of the preceding theorem, we infer that

m
e E = om+l E).

Put & = o If p(E) < & < e then we have ¢j41(7, F) <1 - £

Therefore, Condition (D) holds for m + 1 with the same ¢ and & = P
By induction, the lemma follows for all m + k. The lemma is proven.

Qm—l—l(fa E) =

Corollary 12.1. If the initial MC is quasicompact then all its finitely
averaged MC’s are quasicompact from some number m on.

Note that ¢m+1(z, E) is not a convolution of ¢, (z, E') but generates an MC
of its own. _

Denote by A,, the family of all normed positive finitely additive invariant
measures for the finitely averaged MC with parameter m. Obviously, we have

A=Ay, C ﬁm for every m € N.

Theorem 12.2. For every MC, (]5) is equivalent to the following condi-
tion:

Aba C CG,(X, 2)7 (*)
i.e., the finitely averaged MC (for some m > 1) is quasicompact if and only if all
invariant finitely additive measures of the initial chain are countably additive,
or, in other words, if and only if the initial MC has no nonzero invariant purely
finitely additive measures.

Proof. Suppose that (x) is fulfilled. Then dimA = n < oo by Theo-
rem 8.2. Let {u1,...,un} be a singular basis for A, which exists by Theo-
rem 6.3. Put ¢ = p1 + -+ - + pp,. Assume that ¢ does not satisfy (]5) Then,
for every m > 1 and ¢ > 0, there exist Fp, . € ¥ and 2, € X such that
©(Eme) < € and gm(Tme; Eme) > 1 —e. For every m = 1,2,... and some
fixed 6 € (0,1), put

e=¢e(m) = i Es = U Epme(m)
Then mel
E(; <Z( )<522m_,
m (xm,s(m); E6> > qm (mm,s(m); Em,g(m)) >1-— Qim, m=12....

Take a sequence 7, € S, of Dirac measures 7, = 5mm,6(m), m=1,2,....
Then

4}
)‘nm (Es) = ZA Nm(Es) = Amnim(Es) = gm ('rm,g(m); E6> >1- om

form=1,2,....
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By Theorem 7.3, the set 9{\}"} of all 7g-limit points of the sequence
{A\} is nonempty and included in the set of invariant measures A. Suppose
that g € M{N"} C A. Recall that if the limit lim A" (F) exists then p(E) =
lim A} (E). The above estimate implies that u(Es) = lim A" (F5) = 1. So,
if (D) is not fulfilled for ¢ = yu1 + - - - + iy, then there exist 6 € (0,1), E5 € &,
and p € Ay, such that ¢(Es) < d <1 and p(Ej) = 1.

Since {p1,...,n} is an orthonormal basis for A and p € A, we have
= 2?21 a;ti, where 0 < a; < 1fori=1,2,...,n. Hence p < 2?21 i = .
Consequently, u(Fs) < ¢(E5) < § < 1. The contradiction proves that (x)

implies fulfillment of (D) with ¢ = 1 + -+ + fip-

Suppose that (D) holds for some ¢ € ca(X,X), e > 0, and m > 1. Assume
that (%) does not hold. Then the MC has an invariant purely finitely additive
measure A € Sp,. Every purely finitely additive measure is disjoint from every
countably additive measure (see [16]). Moreover, for each £ > 0, there exists
a set G € ¥ such that ¢(G) < e and A(X\G) < § (see [16, Theorem 1.21]).
Now, reckoning with Theorem 11.1, we infer

sup ¢ (7, G) = sup App(G) > ApA(G) = AMG) > 1—-¢/2>1—¢,
zeX HESpq

which contradicts (D) for the chosen m > 1. Therefore, (x) holds. The theorem
is proven.

Corollary 12.2. Suppose that an MC satisfies (D). Then it also meets ().

Theorem 8.3 and the proof of Theorem 12.2 immediately imply the fol-
lowing assertion.

Theorem 12.3. Suppose that dim A, = 1 for an arbitrary MC. Then

(D) holds, i.e., the finitely averaged MC’s are quasicompact from some m and
Apg = A¢g = {u} C ca(X,X).

In Revuz’s monograph, there is a result (see [13, Chapter 6, Section 3,
Theorem 3.10]) going back to Horowitz (see [8]) in which the limit behavior of
the MC is also connected with invariant finitely additive measures. However,
therein, stringent conditions are a priori imposed on the MC: a Harris chain
is defined with a prescribed invariant countably additive measure on a sep-
arable (X, B). It is proven that, in this case, quasicompactness of the MC
is equivalent to absence of invariant purely finitely additive measures (more-
over, the above invariant measure is unique). As we can see, in Theorems 12.2
and 12.3 close in content none of these conditions is supposed to hold.

The asymptotic behavior of quasicompact MC'’s, i.e., of MC’s meeting
the Doob—Doeblin Condition has been completely studied. Therefore, we
will not write out numerous and cumbersome corollaries for the correspond-
ing MC’s. If need be, this is easy by rewriting, for example, the relevant parts
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of [4,10]. We stress the key point: the conditions of Theorems 12.2 and 12.3
guarantee existence of strong limits in the space of measures for the corre-
sponding MC’s.

Thus, we have necessary and sufficient conditions for quasicompactness
of an MC in analytical form. These are Doob—Doeblin Conditions (D) and
Condition (x) of quasicompactness of the finitely averaged MC, which we call
structural (not in the sense of the terminology of structure or lattice theory but
in the broad sense of the word “structure”). At the same time, Theorems 6.6
and 7.8 of the first part and Theorem 12.2 make it possible to formulate new
analytical necessary and sufficient conditions for quasicompactness of an MC.

Theorem 12.4. Assume given an MC on an arbitrary measure space
(X,X). For the finitely averaged MC not to be quasicompact (for all m), it is
necessary and sufficient that the following conditions hold for all m € N:

There exist €, >0, ¢, —0 as n — o0,
oo
and K, €3, K, #@ for n€N, K12 KD+, [ Kn=9, ()
n=1
such that qm(z,K,) >1—¢e, for v € K41, n € N.

Theorem 12.4 is in fact a direct corollary to the above-mentioned theo-
rems. Theorem 6.6 provides necessity of (—*) for existence of an invariant
purely finitely additive measure, Theorem 7.8 gives sufficiency, and Theo-
rem 12.2 states equivalence of quasicompactness of the finitely averaged MC
to absence of nonzero invariant purely finitely additive measures for the ini-
tial MC.

Corollary 12.3. If an MC meets (—x) then it is not quasicompact.

We point out some technical aspects in (—x), (D), and (D). As for the final
result, for example, for a finitely averaged chain, it does not matter which of
Conditions (f)) and (—x) to check for a specific MC because both conditions are
necessary and sufficient and complementary to one another. Condition (—x)

excludes fulfillment of (D) for the initial chain. At the same time, for prac-

tically checking fulfillment of (D) or (D), it is necessary to find a suitable
measure ¢ € ca(X,Y) which causes problems. The matter is that ¢ is actually
a linear combination of countably additive measures invariant for the MC, and
they are such measures that are to be found.

If we look at (—x) closely then we see that it contains no “extraneous”
measures and only the transition function itself is involved. We believe that, in
some situations, these features of (—x) can facilitate the study of specific MC’s.
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13. Weak Limit Theorems

Convergence of an MC in the 7¢-topology, i.e. weak convergence in
the probabilistic terminology, is closely connected with invariant purely finitely
additive measures. In this section, we expose several results concerning this
matter. The following theorem is of the same importance for weak convergence
of an MC as Theorem 12.4 for strong convergence. The main peculiarity of
Theorem 13.1 is that we do not presuppose existence of an invariant countably
additive (i.e., classical “probability”) measure for the MC. We proved a special
case of Theorem 13.1 in [17]. In the form presented below, Theorem 13.1 was
first published in the preprint [20].

Theorem 13.1. Suppose that X is a normal topological space, we have
an arbitrary MC on (X, B), and pu € Sye, is a countably additive ( “probabil-
ity”) measure. For “weak” convergence of the sequence of the means {1} to p,
i.e., convergence in the T¢o-topology, for every initial finitely additive measure
1 € Spa, it is necessary and sufficient that

/fd(z/fd,u for all ( € A and f € C(X), (%)

or, in other words, A C R(pu), i.e., all invariant measures have p as regular-
ization.

Proof. The necessity is obvious. Indeed, let there exist ¢ € A with ¢ # p.
Then, taking ¢ as the initial measure, we have )\% =(—=Cand (#p,ie., )\%
does not converge to u in the 7o-topology.

We now prove the sufficiency. Let Condition (xx) hold for some p € Syeq-
Assume that A} - pu in the 7¢-topology for some 1 € Sp,. Then, by Alexan-
drov’s Theorem (see [3, Chapter IV, Section 9, Theorem 15]), there exists a set

G = G such that w(G) = (@) and A} (G) - u(G), i.e., there exist ¢ > 0 and
a strictly increasing sequence {n;} such that A7, (G) > p(G)+¢ (or < u(G)—¢)
fori=1,2,.... Let ¢ be a 7g-limit point of \}}.. It exists by Theorem 7.2 and
Corollary 7.2. Then ((G) > u(G) + € and, moreover, ¢ € A by Theorem 7.2.

Since ( is regular, for every § > 0, we can find a set F' = F C G such that
((F) > ¢(G)—4. The difference X\G is closed and (X\G)NF = &; therefore,
by the Urysohn theorem (see [3, Chapter I, Section 5, Theorem 2]), there exists
a function f € C(X), 0 < f(z) <1, with f(F) =1 and f(X\G) = 0.

Estimate the following integrals:

[ s> [ ez )= (@) -0 > w6+ -0
X F

2/fdu+8—6:/fdu+6—6.
G X
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Put § = 5. Then [x fd¢ > [ fdu+ 5, ie., [ fd( = [ fd¢ # [ fdp and
¢ # p, which contradicts (x).

Consider the other possible case, \j.(G) < u(G)—e fori =1,2,.... Then
a Tp-limit point & of A}, satisfies £(G) < pu(G)—e and € € A. Since p is regular,
for every d > 0, there exists a set F' = F' C G such that u(F) > u(G) -6, i.e.,
1(G) < p(F) + 9.

Take again a function f € C'(X), 0 < f(X) < 1, such that f(F) =1 and
f(X\G) =0.

We have

[ sde < [ fig<€(6) <u(@)— = < (P~ =49
X G

:/fdu—6+5§/fdu—6+5.
F X

Put § = § and obtain £ # p, which contradicts (). Consequently, in
both cases, A} — pu in the 7o-topology for every n € Sp,. The theorem is
proven.

Corollary 13.1. Under the conditions of Theorem 13.1, for the sequence
{\n} to converge weakly to a countably additive (“probability”) measure
[ € Syeq for every initial countably additive ( “probability” ) measure 1 € Sycq,
it is sufficient that (xx) hold.

Condition (xx) is not necessary for the convergence \;, — yu in the 7¢-to-
pology for every initial countably additive measure n € Syq even if X is
compact.

Example 13.1. Suppose that X = [0,1] and the MC is defined by
the mapping F': X — X,

2? for x €10,1),
0 forx=1,

F(z) = {

i.e., p(x,E) = d,2(F) for z € [0,1) and p(1, E) = §(E).

Then A} — &y in the 7¢-topology for every n € S,.,. However, making
use of theorems of Section 11, it is easy to prove that there exists a measure
¢ € A such that C((l — &, 1)) =1foralle >0, i.e.,  #d.

If the MC is Feller then (k%) implies g € Ajyeq, i.€., 4 is an invariant
measure.

Theorem 13.2. Let X be a Hausdorff compact space and let ca(X, B) =
rca(X, B). Assume given a Feller MC on (X, B). Then the following three
conditions are equivalent:

(1°) dimA., =1, i.e., the MC has a unique invariant countably additive
measure [ € Speq;
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16 A. I Zhdanok

(2°) there exists y € Syeq such that i — p in the T¢-topology for all
N € Srea;

(3°) there exists (1 € Syeq meeting (xx), i.e., A C R(p), or, in other words,
&= forall £ € A.

Proof. Let (2°) be satisfied. Clearly, the measure u € Syq, of (2°) is
unique. By Theorem 13.1, u meets (xx), i.e., it meets (3°).

By Theorem 13.1, fulfillment of (3°) with a measure p implies fulfillment
of (2°) with u. So (2°) and (3°) are equivalent.

Assume that (3°) holds with some measure p € Syeq, which is obviously
unique. Take £ € A (A = Ay, # @ by Theorem 4.1). Since X is compact, £ is
countably additive. By hypothesis, the MC is Feller and hence £ € A, i.e.,
€ =11 € Apea, and Ay = {p}. Thus (1°) holds.

Suppose now that (1°) holds with an invariant measure j € Sycq. Assume
that (3°) is not fulfilled. Then, for the measure p of (1°), there exists £ € A
such that & # u. Since X is compact, it follows that £ is countably additive
and hence £ € Ag,. Then dim A, > 2, which contradicts (1°).

Thus (1°) and (3°) are also equivalent. The theorem is proven.

Recall that a Feller MC defined on a Hausdorff compact space always has
an invariant countably additive (“probability”) measure.

If, under the conditions of Theorem 13.1, A does not contain purely
finitely additive measures then Condition (%) of Theorem 12.2, equivalent

to (D), holds.

Corollary 13.2. Let the conditions of Theorem 13.1 be satisfied. If we
have N} —  in the T¢-topology for every n € Syeq and M, does not converge
to p in the -, Tp,*-, or Tp,-topology at least for one n € Sy, then the MC
has an invariant purely finitely additive measure.

Figuratively, invariant purely finitely additive measures are a “buffer”
near the limit countably additive measure p (possibly invariant, and possi-
bly being an “ejection” point for the operator A). If there is no “buffer” then
the finitely averaged MC converges strongly to p. In the presence of a “buffer,
the MC converges weakly “sticking” in invariant purely finitely additive mea-
sures “stuck” to the limit measure p in the 7¢-topology.

Remark. In [12], Ramakrishnan proved a finitely additive analog to
Birkhoff’s ergodic theorem. He considered a point transformation of the mea-
sure space preserving the finitely additive measure. Invariant finitely additive
measures for point transformations were also studied by Chersi in [2] as well
as by other authors. These investigations are close in spirit to this research
but have no particular points of intersection with the results exposed here.

It is well known also that to study the usual determinate iterative pro-
cesses generated by point transformations is convenient on describing them in
the Markov chain language. In [18], we solve some specific problems in this
connection in the light of the approach of this article.
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